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Abstract

This paper studies the axisymmetric deformation of a rod containing a single cylindrical transformation inclusion
with uniform axisymmetric eigenstrain. Elastic solutions of the problem are obtained by means of the principle of
superposition. The original problem is divided into two sub-problems to derive the analytical expressions for the
displacements, the stresses and the elastic strain energy of the whole rod. Quantitative pictures on the stress and

strain jumps across the inclusion±matrix interface and on the evolution of the strain energy of the whole rod are
illustrated. The results show that the normalized elastic strain energy depends on the relative length of the
cylindrical inclusion for the length±radius ratio l=a < 2: This strain energy increases very quickly at the initial

growth and soon reaches the peak value, then decreases with the further increase of l=a and ®nally reaches its steady
state value. Several deformation features of this non-classical inclusion±matrix system are discussed. The work of
this paper also provides a quantitative solution in the investigation of the propagation of strain discontinuity

observed during thermoelastic phase transformation in solids such as TiNi shape memory alloy wires. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Experimental results on tensile test of NiTi Shape Memory Alloy (SMA) wires and strips in recent
years have demonstrated that the deformation in the superelastic region is realized by the reversible
propagation of single or several martensite bands during the forward and reverse transformations (see
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Lin et al., 1994, 1996; Shaw and Kyriakides, 1995, 1997, 1998). In addition to this general feature, there
is a strong thermal and mechanical interaction in the response of the specimen because of the latent heat
of the transformation. However, it is interesting to note that in some Cu-based systems (such as CuZnAl
and CuAlBe polycrystalline SMAs) the tensile stress±strain curves at superelasticity are normally stable
and monotonic and, therefore, the deformation is macroscopically homogeneous (see Patoor et al.,
1996). In order to understand and model the band propagation phenomena and to explain such
dramatic di�erence in the deformation modes in the same superelastic regimes, the physical underlying
mechanisms must be explored. At the same time, from continuum mechanics point of view, the
following two questions should be answered: (1) How, why, and when do such strain discontinuity
happen in an initially uniformly stressed and deformed body? (2) What is the overall response of the
TiNi tensile specimen and its dependence on the kinematical factors (such as the transformation strain,
the interface property, the number of interfaces and the geometry of the specimen) if such a deformation
mode (i.e., via propagation of strain discontinuity) is prescribed under external thermomechanical
loading.

Without doubt, the elastic stress strain ®elds and strain energy distribution in the specimen and their
evolution play very important role because of the thermoelastic nature of martensitic transformation in
shape memory alloys. Since the transformation process is accomplished by the growth of martensite
bands, a special type of inclusion±matrix system is used to model the SMA wire specimen containing a
transformation band. The observed propagation of the band can be simulated by a growing inclusion in
the cylindrical rod. Though a great amount of work has been done on the traditional matrix±inclusion
problems such as those in mechanics of composite materials and polycrystals, few analytical solutions
are available in the literature for this special type of non-classic inclusion±matrix system.

As a part of an attempt to understand and model the phenomenon described above, this paper aims
providing an elastic solution of the rod. In Section 2, the basic equations and boundary conditions for
this inclusion±matrix system are described. In Section 3, solution techniques to determine the stress and
displacement ®elds as well as the strain energy of the rod are formulated. The obtained results and their
implications to the transformation behavior of shape memory alloys are discussed in Section 4.

2. Problem formulation and basic equations

Consider an in®nitely long cylindrical rod with a circular cross section of radius a as shown in Fig. 1.
The rod contains a segment O of height l with uniform axisymmetric eigenstrain e�ij (due to phase
transformation or other sources). The elastic constants of the domain are assumed to be the same as the
remaining matrix (note: in real martensitic transformation in SMA, the Young's modulus of martensite
is less than that of austenite, then it will be treated as an inhomogeneous inclusion problem). The
eigenstrain causes a nonuniform deformation and internal stress in the rod. In order to analyze the
present problem, a cylindrical coordinate system �r, y, z� is introduced, with the z-axis being along the
cylindrical axis, as depicted in Fig. 1. Since the eigenstrain e�ij is axisymmetric with respect to z-axis and
distributes uniformly in the inclusion O, its nonzero components can be written as

e�r � e�y � e�1 e�z � e�2 �1�
In the cylindrical coordinates r, y, z, the displacement component uy vanishes and ur, uz are independent
of y: The nonzero strain components er, ey, ez and grz are calculated by the following strain-displacement
relations

Z. Zhong et al. / International Journal of Solids and Structures 37 (2000) 5943±59555944



er � @ur
@r

ey � ur
r

ez � @uz
@z

grz �
@ur
@z
� @uz
@r

�2�

The corresponding stress components sr, sy, sz and trz in the inclusion �jzj < l=2, r < a� can be
calculated through the constitutive relations:
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while their counterparts in the matrix �jzj > l=2, r < a� are obtained as
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Fig. 1. A schematic of a cylindrical rod with an inclusion.
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trz � E

2�1� n�grz �4�

where y � er � ey � ez, y� � e�r � e�y � e�z , and E and n are Young's modulus and Poisson's ratio,
respectively. Furthermore, the stress components in the inclusion and the matrix satisfy the following
equations of equilibrium:

@sr
@r
� @trz

@z
� sr ÿ sy

r
� 0

@trz
@r
� @sz
@z
� trz

r
� 0 �5�

Substituting Eqs. (2)±(4) into Eq. (5), we obtain the Navier equations for the displacements:

1
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� 0
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where

r 2 � @ 2
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r

@

@r
� @ 2

@z2
:

The stress-free boundary conditions at the lateral surface �r � a� are
sr � trz � 0 �r � a�: �7�

The continuity conditions for the traction and the displacements at the interface between the inclusion
and the matrix require that the displacements ur, uz and the stresses sz, trz be continuous at the
interfaces z � l=2 and z � ÿl=2: The traction-free end conditions at the ends of the in®nite cylindrical
rod can be written as

sz � trz � 0 jzj41 �8�
In the following sections, the deformation and the stress ®eld in the rod will be determined using the
basic equations and boundary conditions above.

3. Solution

3.1. Decomposition of the problem

According to the principle of superposition, the original problem can be decomposed into two sub-
problems.

3.1.1. Sub-problem I
The displacements of the cylindrical rod have the following forms
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with

A � 2n
1ÿ n

e�1 � e�2 �10�

Accordingly the stresses in the rod are obtained through (3) and (4) as
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It is easy to check that the displacement solution as given in Eq. (9) automatically satis®es the governing
equation (6), the remote boundary condition (8), as well as the continuity conditions for the traction
and the displacement at the interface between the inclusion and the matrix. Unfortunately, the solution
does not satisfy the lateral boundary condition (7) for jzj < l=2: At the boundary r � a, the solution
gives

sI
rjr�a � p � ÿ E

1ÿ n
e�1 tI

rzjr�a � 0

�
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2

�
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2

�
�12�

In order to satisfy the boundary condition (7), an auxiliary solution is superimposed, which will be
de®ned in Section 3.1.2.

3.1.2. Sub-problem II
The same in®nitely long cylindrical rod is subjected to a distributed pressure ÿp over jzj < l=2 as

shown in Fig. 2. The basic equations and the boundary conditions at remote ends are given by Eqs. (2),
(4)±(6) and (8), while the lateral boundary conditions can be described as

sII
r jr�a � ÿp tII

rzjr�a � 0

�
jzj < l

2

�

sII
r jr�a � tII
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�
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2

�
�13�
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where

p � ÿ E

1ÿ n
e�1 �14�

To obtain the solution, a stress function f is introduced. The stress components are given by
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where f satis®es the bi-harmonic equation

r 2r 2f � 0 �16�
Accordingly, the displacements can be expressed as (see Timoshenko and Goodier, 1970)

Fig. 2. A schematic of a cylindrical rod subjected to a distributed pressure p.
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Hence the problem is reduced to the determination of the stress function f with boundary conditions (8)
and (13), which will be given in Section 3.2.

By superposing the solutions of sub-problems I and II, we obtain the total displacements and stresses

ur � uI
r � uII

r uz � uI
z � uII

z

sr � sI
r � sII

r sy � sI
y � sII

y

sz � sI
z � sII

z trz � tI
rz � tII

rz �18�
which satisfy the basic equations and boundary conditions of the original problem described in Section
2.

3.2. Solution of sub-problem II

Assuming the stress function f as

f � 2

�1
0

�
r�k�I0�kr� ÿ krI1�kr�

�
f�k� sin kz sin

kl

2
dk �19�

where I0�kr� and I1�kr� are the modi®ed Bessel functions of zero order and ®rst order, respectively.
Functions r�k� and f �k� will be determined later. It is easy to verify that this form of stress function
satis®es Eq. (16).

From Eqs. (17) and (15), we obtain the corresponding displacements and stresses as
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In order to satisfy boundary condition (13) functions r�k� and f �k� should be chosen as

r�k� � 2�1ÿ n� � ka
I0�ka�
I1�ka� �22�
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pk4
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In the derivation of f �k� the following integration formula is used:

�1
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cos kz

k
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2
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8<:
p
2

for jzj < l=2

0 for jzj > l=2
�24�

It is easy to check that sII
z and tII

rz satisfy the stress-free boundary conditions at in®nity in the sense of
Saint-Venant's principle, i.e.,

�
s s

II
z ds � 0 and

�
s t

II
rz ds � 0, where s denotes the cross section.

A similar solution technique for such a problem was described in the book of Timoshenko and
Goodier (1970). The present approach is more direct and simple.

3.3. Elastic strain energy

The total elastic strain energy W of the rod can be calculated as (Mura, 1987)

W � 1

2

�
V

sijee
ij dV � ÿ1

2

�� �sr � �sy�e�1 � �sze�2
�
VO �25�

where V is the entire domain of the rod and VO�� pa2l � represents the volume of the inclusion, ee
ij is the

elastic strain, and �sr, �sy and �sz denote the average of stresses sr, sy and sz over the inclusion O
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O
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Eqs. (11), (15) and (18) give
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r�t� � 2�1ÿ n� � t
I0�t�
I1�t� �30�

The elastic strain energy of the rod can be rewritten as

W � pa2l

1ÿ n
H

�
l

a
, n
�
E
ÿ
e�1
�2 �31�

For a given a, n, E, e�1, W is a function of l only. Comparing with the elastic strain energy expression of
an ellipsoidal inclusion in an in®nite domain (Eshelby, 1957; Mura, 1987)

W � ÿ1
2
VOsije�ij � ÿ

1

2
VOCijkl�Sklmn ÿ Iklmn �e�mne

�
ij, �32�

One sees that both expressions are very similar. The coe�cient H�l=a; n�
�1ÿn� in Eq. (31) serves as the shape

factor of the cylindrical inclusion (like Sijkl for ellipsoids).

4. Discussion and conclusions

4.1. The stress ®eld distribution and evolution

The stress ®eld distribution and evolution have the following features: (1) The axial component of
eigenstrain e�z has no contribution to the stress and the total elastic strain energy of the rod. It induces

Fig. 3. The variation of stresses sr and sz normalized by Ee�1 along the positive z-axis when l � 10a and n � 0:3:
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only an axial displacement of the rod. (2) Fig. 3 shows the variation of stresses sr and sz (normalized by
Ee�1� along the positive z-axis (for r � 0, zr0, we have sr � sy and trz � 0� for l � 10a and n � 0:3:
Several typical features of the stress distribution can be identi®ed. Both sr and sz concentrate near the
interface �z � 5a� and decrease rapidly to zero away from the interface. The stress sr has a jump across
the interface while sz is still continuous across the interface. For lr5a, there is little interaction between
the stress ®elds of the two interfaces. When the two interfaces come closer, the interaction of the stress
®elds becomes obvious. Fig. 4 shows the variation of stresses sr and sz (normalized by Ee�1� along the
positive z-axis for the case l � 2a and n � 0:3: It is seen that the stresses in the center part of the
inclusion do not vanish because of this interaction and sr increases as the two interfaces approach each
other (see Fig. 5).

4.2. Implications to the transformation behavior of a SMA wire or rod

Fig. 6 shows the variation of the normalized elastic strain energy W ���W=a3Ee�21 � of the rod as a
function of the normalized length of the inclusion l=a �n � 0:3). The normalized elastic strain energy
increases monotonically and very quickly reaches a peak value as the inclusion grows. Further growth of
the inclusion causes a decrease in strain energy and ®nally reaches a steady state value for l=a > 2:

This type of energy evolution with the growth of transformation band has very important
implications. Based on the thermodynamic analysis of the matrix±inclusion system with energy
dissipation during transformation, an inclusion theory for the propagation of martensite band can be
established (Sun and Zhong, 1999). The basic idea of this theory is as follows: once we know the
expression of the elastic strain energy of the rod, we can construct the free energy expression of the

Fig. 4. The variation of stresses sr and sz normalized by Ee�1 along the positive z-axis when l � 2a and n � 0:3:
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matrix±inclusion system during transformation where the band length l is naturally identi®ed as the
internal variable of the system. The transformation condition and the evolution rule for the increase and
decrease of the band in the stress±temperature space can be derived. According to this theory, the
nucleation and initial growth of martensitic band requires much higher stress than the subsequent
propagation. From the obtained force±displacement relations of the rod during propagation of the
inclusion, the nominal stress±strain relations of the rod for di�erent length of the specimen can be
calculated. The obtained theoretical predictions do quantitatively capture the observed deformation
features of the rod as reported in the test. The readers are referred to Sun and Zhong (1999) for detailed
derivation and discussion.

4.3. Several discussions on this simpli®ed matrix±inclusion model

It should be recognized that the inclusion±matrix system developed in this paper is a simpli®ed model.
For example: the macroscopic observed band propagation in a wire specimen is modeled as a growing
cylindrical inclusion; the A±M interface is assumed to be perpendicular to the loading axis, and the
macroscopic transformation strain in the band (resulted from the volume average of the transformation
strains in all grains of bulk polycrystal) is taken as a material constant (this assumption is deduced from
the experimental observation (Shaw and Kyriakides, 1995)). As a result of this simpli®cation the details
on the microscopic level are neglected (such as the orientation distribution of the habit planes in the
grains of a polycrystalline SMA; the rapid but continuous change of volume fraction of martensite
across the front etc.). Since the interest is on the macroscopic response, it is believed that such a
macroscopic simpli®ed modeling can reveal and characterize the main deformation features of the
transformation process that involves the martensite band propagation at the same macroscopic level.

Fig. 5. The variation of stresses sr and sz normalized by Ee�1 along the positive z-axis when l � 0:2a and n � 0:3:
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Certainly, the e�ect of the A±M interface orientation as well as the di�erence in the modulus between
the austenite and austenite must be further incorporated into the model if a direct quantitative
comparison with the test data of a real NiTi polycrystal are to be made.
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